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Introduction: Geometry and IT
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Imagine . . .

§ . . . that we had, instead of our old Volvo, an autonomous car.
§ Moving into our garage, then, would not be so easy a task for
that car.
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Moving our car into the garage
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The task

The autonomous car would have to avoid collisions with
1 the low walls to the left and right of the path leading up to the

garage and marking off that path from the garden;
2 the stairs leading up to the official entrance at the main floor;
3 the door at the entrance to the ground floor;
4 the left boundary wall of the house, which also bounds the

garage to the lef.
The taks is further complicated by the fact that the path into the
garage is curved rather than straight and that both the bath and
the garage are rather narrow for a modern car.
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Geometry

§ It is rather obvious, that the autonomous car must have a
pretty large amount of geometric knowledge in order to
manage the task.

§ In physics, movements of rigid bodies are often modelled by
movements of “mass points”, . . .

§ . . . and the paths of such mass points are calculated by means
of analytical geometry (and the laws of physics, of course).

§ It is clear that this method is not very helpful for the present
problem.
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Some Background Geometry
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Background 1: Kinds of Geometry
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Two kinds of geometry

The first systematic presentation of geometry is
Euclid’s (ca. 300 BC) Elements. In this book,
Euclid presents the subject as synthetic geometry.
This is an axiomatic theory dealing with points,
lines, planes, etc. It is concerned with the
construction of figures whose properties are
demonstrated by logical deductions.

Analytic geometry analyses geometric entities by
algebraic means. It goes back to Fermat
(160?–1665) and Descartes (1596–1650).
“Algebra” in their times meant, of course,
numerical algebra.
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Synthetic and analytic geometry
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Leibniz’ complaints

§ Analytical geometry of the Descartes-style is a
rather indirect (“per circuitum”) detour to
geometry.

§ It does not directly confront such geometrically
important notions as, for instance, that of shape
(“forma”) and similarity (“similitudo”).

§ Leibniz asks therefore for a kind of algebraic
geometry which directly “calculates” with points,
lines, etc. as arithmetic and algebra (at his
times) does with numbers.
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Algebra vs. geometry

Group theory
G1 a ˝ pb ˝ cq “ pa ˝ bq ˝ c

G2 a ˝ e “ a “ e ˝ a

G3 a ˝ a´1 “ e “ a´1 ˝ a

Special laws
Id a ˝ a “ a

Co a ˝ b “ b ˝ a

Affine geometry

A1 P ‰ Q Ñ
1
Dg .P,Q I g

A2
1
Dg .rP I g ^ g ‖ hs

A3 DP,Q,R.rP ‰ Q ^P ‰ R ^
Q ‰ R ^ Dg .P,Q,R I g s
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Requirements

We want to have a geometry which
1 directly deals with important geometric concepts,
2 but nevertheless is as algebraic in character as possible.
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Background 2: Geometrically important concepts
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What do we require of a geometrically important concept?

1 It should refer to real entities— i. e.,entities which really can
be found in space— rather than to fictions and/or
abstractions.

2 It should be fruitful— i. e., it should be useful in defining
further concepts and in stating many facts.

3 It should be cognitively relevant— i. e., it should play some
role for our conception of space.

4 It should be useful— i. e., it should have applications in
various contexts.
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A problematic case: points

§ The notion of a point is explained in Euclid’s first definition of
the first book of his Elements: “A point is that which has no
part.”

§ Despite its seeming simplicity, the legitimization of the notion
of a point has always been questioned:

1 “Plato even used to object to this class of things as a
geometrical fiction” ; Aristotle Metaphysics 992a 20.

2 The stoics assumed “. . . that such bounding elements of solids
only have a wafer-thin existence in thinking”; Proclus Lycaeus
A Commentary on the First Book of Euclid’s Elements, p. 228.

3 “The space of geometry and physics consists of an infinite
number of points, but no one has ever seen or touched a
point”; Bertrand Russell Our Knowledge of the External World,
p. 119.
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Psychological evidence

According to Edgar Rubin, Russell is not right:
1 “Man har ikke bemærket, at om end breddeløse Streger ikke

kan tænkes som Naturgenstande, kan de dog sanseligt
anskueligt opleves” ; Synsoplevede figurer, p. 180.

2 “Ligesom der findes breddeløse Linjer, findes der
udstrækningsløse Punkter” ; loc. cit., p. 181
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More psychology

Otto Selz argued in 1930, that the point is—as “der reine Ort im
Raum” —

3 “strukturgesetzlich [. . . ] gefordert [. . . ] und es ist eine relativ
untergeordnete Frage, ob das empirische Minimum Visibile, die
Punktgestalt, als ein reines Ortsphänomen anzusehen oder als
ein winziges rundes flächenartiges Gebilde zu betrachten ist” ;
Die Struktur der Steigerungsreihen und die Theorie von Raum,
Zeit, und Gestalt, p. 40.
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Conclusion 1

Therefore I shall not worry about using the concept of a point in
my system of geometry.
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Convexity

Definition: A region of space is convex iff it contains with each two
points also the straight line segment which connects these them.
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Convexity is an important concept

§ It plays a central role in various subdisciplines of mathematics
(such as functional analysis, game theory, linear programming,
etc.).

§ It has important applications in computational geometry
(collision avoidance, shape analysis, data analysis).

§ Quite generally, many geometric concepts can be defined in
terms of convexity and many geometric facts can be stated
with the help of that concept.

§ It seems also to play a major role in the
human cognitive system.
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Convexity in the human cognitive system

Gärdenfor’s thesis:

A (genuine) property is a
convex region of a
quality space.
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Example of quality spaces

Runge’s Colour Sphere (1810) Colour Cone

fragrant putrid

burned
resinous

spicy

ethereal

Henning’s Smell Prims (1915)

saline

sweet

sour

bitter

Henning’s Taste Tetrahedron (1916)
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Presenting the System
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Geometry stack

Class Logic Mereology

Pre-Geometry

Convexity

Straightness

Linear Order
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The Mereological Background
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Reconsidering Euclid’s definition of a point

§ Σημεῖόν ἐστιν, οὗ μέρος οὐθέν. — “A point is that which has
no part.”

§ Here the concept of a point is defined in terms of the
part-of-relationship.

§ The theory of this relationship is called mereology (gr. μέρος
‘part’).

§ Modern mereology has its origin in the work of the Polish
logician Stanisław Leśniewski.
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Defining points in mereology

§ In modern mereology, one conceives of the part-of-relationship
as a reflexive relation: Everything is (trivially) a part of itself.

§ In symbols: uPu.
§ Points are thus only parts of themselves:

p P Dp ðñ
def

uPp Ñ u “ p

§ Or the original Euclid: p P Dp ðñ
def

 Du.ru ‰ p ^ uPps.
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Mereological concepts

u2u1

u1Pu2

u1 u2

u1Ou2 ðñ
def

Pąu1 X Pąu2 ‰ H

u3

u1u2
u3

u4
u5 u6

u7

u8

u0

§ tu1, u2, . . . , u8u Ď Pąu0

§ vOu0 Ñ vOum for one m
with 1 ď m ď 8

§ Σpu0, tu1, u2, . . . , u8uq, i. e.,
u0 is the sum of
tu1, u2, . . . , u8u
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Defining the mereological sum

§ u is the sum (or: supremum) of A iff
1 each element of A is a part of u
2 each individual overlapping with u overlaps with some element

of A.

§ Σpu,Aq ðñ
def

A Ď Pąu ^ @u1 P Pąu.Du2 P A.u1Ou2

§ suppAq ùùù
def

�u.Σpu,Aq

§ u1 ` u2 ùùù
def

supptu1, u2uq
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Tarski’s axioms of atomistic mereology

MER 2 u1Pu2 ^ u2Pu3 Ñ u1Pu3
The part-of-relation is transitive.

MER 3 Σpu1, tu2uq Ñ u1 “ u2
The sum of a singleton equals its sole element.

MER 4 A ‰ HÑ Du.Σpu,Aq
Every non-empty class has a sum.

MER 6 Pąu XDp ‰ H

Each individual has a punctual part.
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Intersection and multiplication

u1 u2
Πpu0, tu1, u2uq

ô Σpu0,Pąu1 X Pąu2q

The general definition:
§ Πpu,Aq ðñ

def
Σpu, tu1 | @u2 P A.u1Pu2uq

§ infpAq ùùù
def

�u.Πpu,Aq

§ u1 ¨ u2 ùùù
def

infptu1, u2uq
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First Steps into Geometry

34 / 46



“The hull”

§ Let Dc be the domain of convex regions.
§ Each region u is a part of some element of c P Dc.
§ The smallest convex region thus containing u is called h’s
convex hull and is denoted by “rus”.

§ The convex hull of u is thus a convex approximation towards u.
§ You should think about the convex hull of a region as a tight
“rubber wrap” wrapping this region.
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The idea

u

c1

c3

c2

rus p1 p2

c1

c2

c3
p1p2
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The definitions encapsulating the idea

§ rus ùùù
def

infpc | u P Pącq — the convex hull of u.

§ rp1, p2, . . . , pns ùùù
def

rsuppp1, p2, . . . , pnqs — the n-tope

spanned by p1, p2, . . . , pn.
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Examples of n-topes

p1 p2

a 2-tope,
i. e., a line
segment

p1p2 “ rp1, p2s

p1 p2

p3

a 3-tope,
i. e., a triangle
4p1p2p3 “

rp1, p2, p3s

p1 p3

p2

p4

a 4-tope,
i. e., a

tetrahedron
Tetra p1p2p3p4 “

rp1, p2, p3, p4s
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Segments and convex regions

§ We can now fix the domain Ds of (straight) line segments:
Ds “ tu | Dp1p2.u “ p1p2u.

§ We can prove,
1 that the class Cv ùùù

def
tu | @p1, p2 P Pąu.p1p2Puu actually has

the properties which we expect to hold true for the domain Dc

of convex regions;
2 and even Cv Ď Dc.

§ Of course, we would like to have the converse inclusion, too.
Hence we adopt the axiom:

GEO 1 @p1, p2 P Pąu.p1p2Pu Ñ u P Dc
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Segments and points

§ We did not require that the boundary points of a segment are
distinct from each other.

§ However, it seems natural to assume that a segment pp
shrinks down to p — the idempotent law.

§ Idempotency implies that points are convex. Conversely, the
convexity of points implies the idempotent law: p “ pp.

§ Hence we assume the axiom: Points are convex.
GEO 2 Dp Ď Dc

40 / 46



Aside on algebra

§ We just noted the idempotent law for the join operation. Let
us generalize that relation thus:
u1u2 ùùù

def
supps | Du3 P Pąu1, u4 P Pąu2.s “ u3u4q.

§ It is then very easy to see that for this operation
1 idempotent law holds true: u1u1 “ u1
2 and that the commutative law does, too: u1u2 “ u2u1.

§ In the full system of geometry the
3 assosiative law u1pu2u3q “ pu1u2qu3

is also valid for this operation.
§ We thus approach an algebraic form of geometry.
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Straightness
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Segments should be straight

§ We expect the line segments fixed by converging classes of
convex regions to have certain properties.

§ Especially, they should be “straight” rather than “curved”.
§ Therefore we add two axioms which explicate what
“straightness” means and which require the segments to have
this property.
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Decomposability

(GEO 5) An internal point of a segment dissects that segment
into two complementary segments with the division
point as the sole common part.
p2Pp1p3 Ñ p1p3 “ p1p2 ` p2p3 ^ p2 “ p1p2 ¨ p2p3

p1 p2 p3
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Excluded: Loops

p1 p3
p2

Line segments do not include
loops.
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Non-Bending

GEO 6 The sum of two segments sharing two points is again
a segment.
Dp1, p2.rp1 ‰ p2 ^ p1, p2 P Pąs1 XPąs2s Ñ s1 ` s2 P
Ds

Not possible Straightness

s1
p1 p2

s2

s1 s2
p1 p2
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